Clinical suitability of different implant designs: Analysis of customer complaints reaching the implant manufacturer.
Editorial board

Editor-in-chief
Prof. Dr. Stefan Ihde
ihde@ihde.com

Managing editor
Dr. Vivek Gaur
drvivekgaur@yahoo.co.in

Dr. Narender Singh
omsaidental@yahoo.com

Coordinating editor
N. N.

Editorial board (in alphabetic order)
Dr. Yassen Dimitrov, Bulgaria
Za. Stephan Haas, Germany
Dr. Maynur Khaimar B.D.S., M.D.S., F.I.C.O.I
Prof. Dr. Vitomir S. Konstantinovic, Serbia
Dr. Valeri Lysenko, Ukraine
Katarina Markova, Prague
Jura Mitruschenkow, Moskow
Dr. Gerald Schillig, Germany
Dr. Katrin Tost, Greece

Evidence reports and Critical Appraisals
IF Research & Evidence Dept.

Single Issue Price
Euro 30

Annual Subscription
Euro 120

Copyright
Copyright ©2008 - 2013 by International Implant Foundation
DE- 80802 Munich / Germany
www.implantfoundation.org

Contact
publishing@implantfoundation.org

CMF.Impl.dir.
ISSN 1864-1199
e-ISSN 1864-1237

Disclaimer

Hazards
Great care has been taken to maintain the accuracy of the information contained in this publication. However, the publisher and/or the distributor and/or the editors and/or the authors cannot be held responsible for errors or any consequences arising from the use of the information contained in this publication. The statements or opinions contained in editorials and articles in this publication are solely those of the author thereof and not of the publisher, and/or the distributor, and/or the IIF. The products, procedures and therapies described in this work are hazardous and are therefore only to be applied by certified and trained medical professionals in environments specially designed for such procedures. No suggested test or procedure should be carried out unless, in the user’s professional judgment, its risk is justified. Whoever applies products, procedures and therapies shown or described in this publication will do this at their own risk. Because of rapid advances in the medical sciences, IF recommends that independent verification of diagnosis, therapies, drugs, dosages and operation methods should be made before any action is taken. Although all advertising material which may be inserted into the work is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or endorsement by the publisher regarding quality or value of such product or of the claims made of it by its manufacturer.

Legal restrictions
This work was produced by IF Publishing, Munich, Germany. All rights reserved by IF Publishing. This publication including all parts thereof, is legally protected by copyright. Any use, exploitation or commercialization outside the narrow limits set forth by copyright legislation and the restrictions on use laid out below, without the publisher’s consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, scanning or duplication of any kind, translation, preparation of microfilms, electronic data processing and storage such as making this publication available on Intranet or Internet.

Some of the products, names, instruments, treatments, logos, designs, etc. referred to in this publication are also protected by patents and trademarks or by other intellectual property protection laws (eg. «IF», «IIF» and the IF-Logo) are registered trademarks even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name, instrument, etc. without designation as proprietary is not to be construed as representation by the publisher that it is in the public domain.

Institutions’ subscriptions allow to reproduce tables of contents or prepare lists of Articles including abstracts or for internal circulation within the institutions concerned. Permission of the publisher is required for all other derivative works, including compilations and translations. Permission of the publisher is required to store or use electronically any material contained in this journal, including any article or part of an article. For inquiries contact the publisher at the address indicated.
1. Introduction

In literature survival rates of implants are typically determined in studies undertaken in universities. Such studies may have a doubtful base, because inclusion- and exclusion criteria at universities are different compared to offices of private practitioners. Another problem is that comparative studies between two systems or event two technologies are not available. The reason is, that usually specialists for alternative treatment strategies are not available in one center. Bad outcome of real comparative studies could affect the relationship between the university and derail the vital financial support of an implant manufacturer.

Another problem is the definition of success criteria in clinical studies. In a number of studies we find only such implant counted as lost, which had reached the phase of the prosthetic treatment. Other authors include all implants consecutively placed. Data considering the intent-to-treat principle are not available in dental implantology. Hence studies are done with a small number of patients and usually only a few dozens of dental implants.

In our study we have chosen a different approach to assess the influence of the design and the surface on the outcome of a dental implant treatment. Based on the world-wide sales of 254,113 consecutive implants of all types manufactured by Dr. Ihde Dental AG (www.implant.com) we have related the number of sold implants to the number of complaints which were made to the quality department of the manufacturer.

Clinical suitability of different implant designs: Analysis of customer complaints reaching the implant manufacturer.

Author and Corresponding author:
Prof. Dr. Stefan K.A. Ihde
Head of Dental Implant Faculty
International Implant Foundation
Leopoldstr. 116
DE-80802 Munich/Germany
e-mail: ihde@ihde.com

Abstract

Customer complaints regarding dental implants stemming from dentists and surgeons world-wide were analyzed for a defined period by an implant manufacturer. The number of "complaints related to implants" vs. "implants sold" reveals that implant with polished endosseous surface and designed for immediate loading protocols as well as single piece implants are significantly less prone to customer complaints compared to traditional 2-stage systems (p < .001) with rough (sand-blasted/acid etched) surface (p < .001) and larger endosseous diameter. As we had planned to publish these data and collected them meticulously, this study is prospective.

Keywords: Implant complaints, implant surface, implant design, immediate loading
2. Material and Methods
The manufacturer produces a broad variety of implant designs. All precision part manufacturing and packaging as well as cleaning and sterilization for all systems takes place in the same facility, using the same raw materials, machines, chemicals, cleaners, workers, and the same production protocol. All products are CE-marked and produced in a facility working under ISO 13495 (formerly ISO 9001, ISO 46001) regulations. The implants are registered outside of the EU in many countries around the world. Returned implants from all countries entered into the calculation.

We have compiled data from the sales department and the quality department (working on returned items).

The following implant systems were controlled for implant returns, and the following groups were made.

Group 1: Single-piece implants (rough and polished surfaces)
- Compressionscrews (KOS group of implants)
- Crestal basal implants (Strategic Implant®, BCS, GBC, Beces)
- Lateral basal implants (BOI/TOI)

Group 2: Two-Stage (2-piece) implants (rough and polished surfaces)
- Standard cylindrical full screw implants (neck max. 4.8 mmd, brands SSO, STI; Straumann-clones)
- Wide neck cylindrical full screw implants (STW, GTW; Straumann-clones with wide neck)
- Bone Level Plus Implants
- Internal Hex standard implant (Hexacone/GIH)
- Tri-Lobe Implants (Place)
- Tuber-Pterygoid screws (TPG)

Group 3: Implants with fully polished surface for immediate loading
- Strategic Implant® (BCS/GBC/BECES)
- Lateral basal implants (TOI/BOI/COI)
- Tuber-Pterygoid screws (TPG)

Group 4: Implants with sandblasted/etched
- Standard cylindrical full screw implants (neck max. 4.8 mmd, brands SSO, STI; Straumann-clones)
- Wide neck cylindrical full screw implants (STW, GTW; Straumann-clones with wide neck)
- Bone Level Plus Implants
- Internal Hex standard implant (Hexacone/GIH)
- Tri-Lobe Implants (Place)
- Compressionscrews (KOS group of implants)

Complaint rates (p) between different groups were analyzed using cross-tables and χ² tests as well as odds ratios with respective estimates of confidence intervals (in the case of 2x2 tables). Also, confidence intervals of category complaint rates were computed.

Because economical interest of the manufacturer had to be protected, the study period (showing in which period the implants have been sold) as well as details about sales of each system cannot be revealed in this publication in all details.
Implants with identical outer design but with different internal connection (e.g. Full screws with internal conus and Full screw implants with internal octagon) are in the same group.

3. Results
Results are based on $N = 254,141$ sold implants of all systems are shown in Table 1. $n = 178,201$ implants belonged to group 3 (immediate load systems), the rest belonged to the 2-stage group of implants. The overall return rate of implants is 0.282%. Figure 1 illustrates estimated complaint rates and their confidence intervals in relation to the total return rate.

<table>
<thead>
<tr>
<th>Category</th>
<th>Implant design</th>
<th>Returned implants % (UCI; LCI)</th>
<th>Implant design and typical modus of usage</th>
<th>Clincial appearance (average size and length)</th>
<th>Endosseous surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compression Screws Implants (KOS/GCS - Group)</td>
<td>0.13 (0.109; 0.155)</td>
<td>Single piece, Immediate loading</td>
<td>Sandblasted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implant Type</td>
<td>Diameter (mm)</td>
<td>Loading</td>
<td>Surface Treatment</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>StrategicImplant® (BCS, GBC, Beces)</td>
<td>0.03 (0.022; 0.050)</td>
<td>Single piece, Immediate loading</td>
<td>Polished/machined</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Internal Hex Internal Cone StandardImplant: Hexacone®</td>
<td>0.52 (0.455; 0.601)</td>
<td>2-piece, 2-stage Healing phase</td>
<td>Sandblasted/etched</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Standard Cylindrical Full screw Implant SSO®, STI® (Strauman-clones)</td>
<td>1.06 (0.907; 1.237)</td>
<td>2-piece, 2-stage Healing Phase</td>
<td>Sandblasted/etched</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Implant Description</td>
<td>Diameter (mm)</td>
<td>Healing Phase</td>
<td>Surface Treatment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wide Neck cylindrical full screw implants STW, GIW</td>
<td>2.77 (1.946; 3.917)</td>
<td>2-piece, 2-stage Healing phase</td>
<td>Sandblasted/etched</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Internal Hex/internal Telescope Implants Xign® (Xive compatible)</td>
<td>0.54 (0.407; 0.701)</td>
<td>2-piece, 2-stage Healing phase</td>
<td>Sandblasted/etched</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lateral basal Implants (Disk-type-implants) BOI® / TOI®</td>
<td>0.10 (0.033; 0.282)</td>
<td>Single piece, Immediate loading</td>
<td>Polished/machined</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tubero-Pterygoid-Screw implant TPG</td>
<td>0</td>
<td>2-piece, immediate loading</td>
<td>Polished/machined</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implant Design</td>
<td>Code</td>
<td>Quantity</td>
<td>Healing Phase</td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>9</td>
<td>Bone Level Plus Conical Screw Implant (Straumann-clone)</td>
<td>1.42 (1.090; 1.838)</td>
<td>2-piece, 2-stage Healing Phase</td>
<td>Sandblasted/ etched</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2-stage compression screws STO, STC, (Straumann-clone)</td>
<td>0.91 (0.650; 1.277)</td>
<td>2-piece, 2-stage Healing phase</td>
<td>Sandblasted/ etched</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Place® (GPL)</td>
<td>0.60 (0.223; 1.491)</td>
<td>2-piece, 2-stage Healing phase</td>
<td>Sandblasted/ etched</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Calculation of returned implants vs. sold implants in the different groups of designs.
Polished two-piece implants for the tuberopterygoid region showed no complaint at all in the observation period. However, only 350 sold pieces are included in the comparison.

Rough implants with large neck diameter (4.8 mm and larger) show the highest complaint rate (2.77%). The complaint rate for single-piece basal screw implants (Category 2, Systems: BCS, BECES, GBC) is approx. 23.3 times lower than for all other 2-piece implants.

Prior to group analyses, categories 4+5 and 3+6+11 were tested for significant within-group differences. Thereby, comparison of groups 4 and 5 yielded significant differences in complaint rates, $\chi^2(1) = 26.349, p < .001$ whereas results of 3, 6 and 11 indicated no significant effects, $\chi^2(2) = 0.119, \text{n.s.}$.

Comparing category 4+5 ($p_c = 1.182\%$) against 10 ($p_c = 0.913\%$) yielded no significant difference in complaint rates, $\chi^2(1) = 1.818, \text{n.s.}$, OR = 1.297 (0.907; 1.853). However, when comparing implants in categories 4+5 (Straumann clones with cylindrical cone and minimal threads, indifferent implant diameters) against implants in categories 3+6+11 (2-stage implants with conical core and more aggressive threads) ($p_c = 0.527\%$), results indicate a significant difference in return rates, $\chi^2(1) = 77.097, p < .001$. The odds of observing a complaint in group 4+5 are OR = 2.257 (1.875; 2.717) times higher than in group 3+6+11.

When comparing category 4 (standard Straumann clone with cylindrical core and max. platform diameter of 4.8 mm) ($p_c = 1.059\%$) against 9 (Straumann-compatible implant with conical compression screw threads) ($p_c = 1.418\%$), no significant difference emerges, $\chi^2(1) = 3.440, \text{n.s.}$, OR = 0.745 (0.552; 1.005).

Complaint rates of categories 3+6+11 (2-stage implants with conical core and more aggressive threads) are significantly different compared to category 9 (Bone Level Plus), $\chi^2(1) = 49.975, p < .001$. Complaints in group 3+6+11 are OR = 0.368 (0.277; 0.490) times less likely to be observed than in category 9.
Figure 1: Product complaint rates of categories (dots) together with 95% confidence intervals and total return rate (dashed line).
Grouping the systems as described in the material and method section of this publication was then done (Table 2).

<table>
<thead>
<tr>
<th>Group</th>
<th>Surface & Design of implants</th>
<th>Returned implants %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Single Piece Implants (rough and polished)</td>
<td>0.09</td>
</tr>
<tr>
<td>Group 1 plus System TPG</td>
<td>Immediate Loading Systems (1-piece & 2-piece)</td>
<td>0.09</td>
</tr>
<tr>
<td>Group 2</td>
<td>All 2-stage Implants with sandblasted/etched surface</td>
<td>0.73</td>
</tr>
<tr>
<td>Out of Group 2</td>
<td>Conical core, medium retention thread sandblasted/etched surface (Hexacone, Place, Xign)</td>
<td>0.91</td>
</tr>
<tr>
<td>Group 2 plus TGP</td>
<td>All Implants with Polished Endosseous Surface (single piece, 2-piece)</td>
<td>0.70</td>
</tr>
<tr>
<td>Group 3</td>
<td>All Implants with Polished Endosseous Surface (single piece, 2-piece)</td>
<td>0.04</td>
</tr>
<tr>
<td>Group</td>
<td>All Implants with sandblasted/etched Surface (single piece, 2-piece)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Table 2: Grouping of different implant designs according to the mode of application (Immediate Loading, 2-stage) and according to surface characteristics (rough vs. polished surface).
Comparison of polished \((p_c = 0.037\%) \) and rough \((p_c = 0.393\%) \) surfaces yields a significant difference in complaint rates, \(\chi^2(1) = 245.130, p < .001 \). Thereby, the odds of observing complaints in the group of rough implants is \(\text{OR} = 10.777(7.429; 15.630) \) times higher than for polished implants.

With regard to implant design, 2-piece implants \((p_c = 0.741\%) \) show significantly higher complaint rates than single-piece implants \((p_c = 0.089\%) \), \(\chi^2(1) = 795.968, p < .001 \). The odds for implant complaints are \(\text{OR} = 8.408(7.044; 10.040) \) higher for 2-piece implants, compared to single piece implants.

The implant's core also shows significant impact on complaint rates, \(\chi^2(1) = 291.216, p < .001 \). Thereby, conical implants \((p_c = 0.309\%) \) exhibit \(\text{OR} = 3.856(3.266; 4.553) \) times lower odds of being returned, compared to cylindrical implants \((1.182\%) \).

Thread types also indicate a significant relationship to the outcome, \(\chi^2(3) = 982.317, p < .001 \). Aggressive threaded implants for 2nd-cortical engagement show the lowest rates of complaint \((p_c = 0.033\%) \), followed by compression screws \((p_c = 0.159\%) \), cutting \((p_c = 0.527\%) \) and cylindrical implants with minimal threads \((p_c = 1.229\%) \).

When comparing group 3 and 4 against each other, it must be noticed that in Group 3 mainly single-piece implants are refunded (99.7%), whereas the percentage of single-piece implants in Group 4 is only 57.1%.

4. Discussion

Dr. Ihde Dental AG is encouraging all customers to return failed or unusable implants by replacing those implants and other parts free of charge. There is no post-sales time-limit for this warranty, i.e., such replacements will be done even after many years. We therefore assume that most customers will actually send back failed implants if failure happens. Returned implants reach the manufacturer either directly or through the national or local dealer. Implants which were however removed in a different office will probably not be returned to the manufacturer.

Exclusion criteria

We have excluded from this study returned implants, which are related to problems with the insertion tool (e.g., defective insertion tools damaging implant connections).

We did not exclude implants which had never been placed, because they have for example fallen on the floor after opening the pack, as this is a typical design-related problem and we cannot be sure regarding the reason for the return. Such returns were negligible however in relationship to implants which have been lost after placement. All brands manufactured by Dr. Ihde Dental AG (Dr. Ihde Dental-Brand, OneWayBiomed-Brand, Simpladent-Brand) were included and not calculated separately.

In the manufacturer’s “instruction for use” no restrictions are made regarding the use in upper or lower jaw. So we can assume that all implants were used in both jaws, and that the treatment provider was well able to search for...
The best fitting implant for the given case. The only strict recommendation given therein is to load (splint) immediate loading systems within 72 hrs (3 days). In the world-wide training course the manufacturer encourages the treatment provider to use the Strategic Implant® (Category 2) even in cases of severe periodontal involvement, right after extractions, and even in severely infected sites under local disinfection coverage. Hence we have to assume that the implants are used also in real life under those conditions. Such conditions are not at all suitable for rough 2-stage implants, who are delivered with instructions which list up a large number of contra-indications and other limitations for use as known in 2-stage implantology. For 2-stage systems (except for TGP) standard healing times are described to be 3 months in the lower jaw, and 5-6 months in the upper jaw.

The manufacturer also does not limit the use of a Strategic Implant® to sites which are free of periodontal involvement, because one study had shown that lateral basal implants even perform better if such involvement is given and if implants are placed right after extractions.

What are the strengths of this study:
1. The sample size is extremely big.
2. The information stems from practitioners and not from universities (not one single university was included).
3. The practitioners were choosing out of 10 systems the ideal system for them and the case, which they assume would work best in their hands. This allows a good comparison of systems.

Where could weaknesses to our approach be hidden:
1. We cannot be sure that really all lost implants are returned. Especially years after the treatment the practitioner may have changed the supplier or the local dealer may have discouraged the doctor to return the implant.
2. Implants which have been taken out in a different office will probably not be returned to the original manufacturer.
3. The reason for the very good result for polished implants may partly be lying in the fact that practitioners may clean them (like instruments) and re-sterilize and re-use them, just as it is done in many countries with machined or polished fracture plates in traumatology. Such implants will not be sent back to the manufacturer, as they can be used (although such re-use is not advocated in the instructions for use).
4. Statistical comparisons of complaint rates are bivariate. Confounding effects of external factors and / or interactions between implant factors might have occurred.

This is not a study about implant success rates, it simply describes and compares the number of complaints from dental clinics and relates it to the sales-figures.

Many of the implant were sent back incl. cemented (and sometimes screwed on) prosthetic work-pieces. This shows that our sample includes not only early losses of unloaded implants, but also losses which occurred during the usage phase of the implants. Only some implantologists reported about the period of usage of the implants in the mouth. We did not see a way, how to use this information in this study, because too often full information was missing.

Ancient dental literature states that polished implants in general are not suitable for immediate loading. This statement may be true for implants placed into spongious bone areas, it is, as this study and decades of experience in traumatology and orthopaedic surgery shows, definitely not true for cortically anchored implants. We found hence also successful reports on early or immediate loading of polished implants².

Astonishingly the “Straumann-compatibles” showed a high complaint rate. The design of these implants feature almost no macro-retention and the cylindrical endosseous design does not allow to compress spongious bone while inserting the implant. The success rate of these devices depends strongly on the endosseous design. Implants with almost no thread-retention (Category 4, threads 0.15 mm thicker than the core) perform worse than implants with the same connection, but with conical design and larger compression-threads (Category 10, threads 0.25 mm thicker than the core).

Rough-surfaced single-piece compression screws (Category 1) perform however much better than 2-stage systems with the same surface (Category 10).

The present study also shows, that with the help of excellent marketing even quite unsuitable implant designs (Categories 4, 5, 9) can become world market leader. It seems that the real features of an implant design is not correctly estimated by many implantologists, they just follow the mainstream.

Direct comparison between this study and other studies following a defined cohort of implants are probably possible. We found that the rates of non-complications can fit to literature data regarding immediate or early loading³.

Finally our study shows, that there is not a “good” or “bad” manufacturer for dental implants, the complaint-rate (and thereby also the “success”-rate) is very closely connected to the implant design.

5. Conclusion
Within the limits of the design of this study it can be concluded that:

1. Implants with polished endosseous surface and cortical engagement lead to the lowest rate of customer complaints: only 0.04% of such implants are returned.

2. Single piece implants designed for immediate loading yield much lower complaint rates compared to “2-stage systems”, especially if the 2-stage systems provide a rough endosseous surface for “biologic osseointegration”.

3. Implants with conical core exhibit a 3.8 times lower complaint rate compared to cylindrical core implants with minimal threads.

4. Aggressive threaded implants for engagement in the 2nd cortical show the lowest rate of complaints (0.03%), compared to other thread types, and compared to all other implants.

Based on the results of this research, we give the recommendation to our customers to use polished, single piece implants for anchorage in the 2nd cortical in an immediate load protocol in order to profit from the lowest possible rate of complaints. The use of polished implant devices in an environment with strong bacterial load (such as the oral cavity) is also from a logical point of view the only safe option. It is completely useless to buy and use implants with a “specific surface”, as these surfaces will increase the probability of complaints. Besides this, rough surfaces (sand-blasted, acid-etched, etc.) trigger “peri-implantitis”, especially if combined with large implant diameter.
The International Implant Foundations announces that the successful Curriculum for Immediate Loading and the Clinical Master-degree in Immediate Loading and Basal Implantology will be available soon in the following location:

Step 1

Curriculum for Immediate Loading in Dental Implantology

Location:
Frankfurt - Airport
Duration: 4 sessions of 2 days.
Target group: Implantologists, Oral Surgeons, Maxillo-facial Surgeons, Dentists.
Dates: 27./28. 3. 2015 / 8./9. 5. 2015 / 12./13. 6. 2015 / 4./5. 9. 2015 (Budva)

Session 1:
Principles of Basal osseointegration; surgery and prosthetics, treatment planning, avoiding bone-augmentations and sinus-lifts even in difficult cases.
Session 2:
Bone physiology and choice of implant locations (4D-implantology)
Session 3:
Principles of the work with compression screws: surgery and prosthetics
Session 4:
Maintenance; Treatment of complex cases.

Step 2

Practical application
Case Presentation and / or Publications (for Credit Points)
Case Support
Locations:
Individual tuition in the offices of the participants and the teacher
Supervision: through the local coordinator

Step 3

Master of Immediate Loading
Master-Exam (written)
Location: Budva/Montenegro / 5./6. 9. 2015
Supervision: Through the regional coordinator
Requirements: IF-Curriculum (Step 1), additional Credit Points (Step 2)